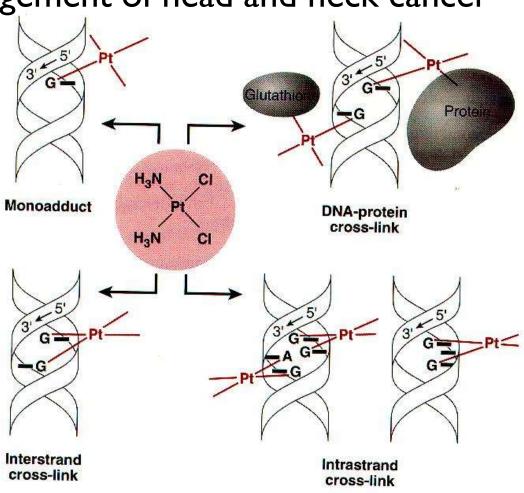
Cancer Therapy

- Surgery
- Radiation
- •Immunologican Therapy (interferons Incr. prod. T-cells and B cells)
- Chemotherapy
 - Alkylation Agents
 - Antimetabolites / Nucleoside Analogs
 - Antibiotics
 - Antimitotic Agents
 - Micellaneous Antineoplastic Agents
 - Hormonal Therapy

Platinum complexes


Cisplatin

Cisplatin is the cornerstone drug in the modern management of head and neck cancer

Mechanism:

Covalent crosslinks with GG base pairs (bends DNA)

Platinum complexes: Cisplatin

Pharmacology:

IV, not effective orally; most (90%) bound to plasma proteins.

concentrates in liver, kidney, intestine and ovary; excreted in urine.

Toxicity:

N&V, diarrhea, hypersensitivity reactions (rashes), renal damage (reduced with hydration), ototoxicity with high frequency hearing loss and tinnitus, peripheral sensory neuropathy (paresthesia and loss of proprioception), bone marrow depression.

Antimetabolites-

Purines.

Pyrimidines.

Folates.

Related compounds.

The antimetabolite drugs may exert their effects by several individual mechanisms involving:enzyme inhibition at active.
enzyme inhibition at allosteric.
enzyme inhibition at related sites.

Antimetabolites (Nucleoside Analogs, Folic acid analogs)

Antimetabolites:

Prevents synthesis of normal cellular metabolites often close structural similarities metabolite and antimetabolite

Nucleoside analogs as antimetabolites

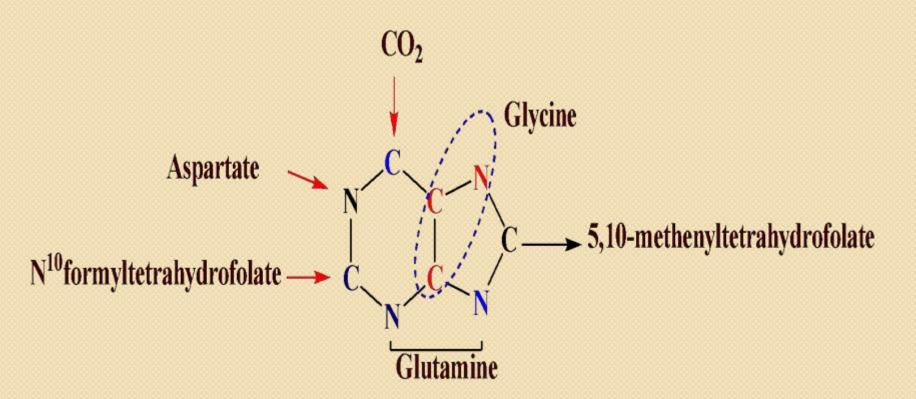
Possible mechanisms:

- Incorporation DNA or RNA; misreading
- Inhibition of DNA polymerase
- Inhibition of Kinases
- Inhib. of enzymes involved in pyrimidine / purine biosynthesis

DNA

Guanine

RNA


Uracil

Cytosin

Adenine

Guanine

Purine antagonist

Inhibit the synthesis of Purine, inhibit synthesis of AMP (Adenylic) and GMP (guanylic) through the following steps:-

- 1)Inhibit the conversion of 5-phospho ribosyl pyrophosphate into 5-phosphoribosylamine.
- 2)Inhibit conversion of inosinic acid to adenylsuccinic acid.
- 3)Inhibit conversion of adenylsuccinic acid to AMP 4)Inhibit conversion of inosinic acid to xanthylic acid.

ЮH

HOOC H₂N HÓ 5-aminoimidazole -4carb oxylateribonucle otide NH2 HOOC COO H₂N H₂N HÓ ЮH 5-aminoimidazole -4carb oxamiderib onucleot ide

Examples of Purine synthesis inhibitors:-

Mercaotopurine

monophosphate

6-thioinosinate

6-methylthioisosinate antimetabolite

Purine antagonist:

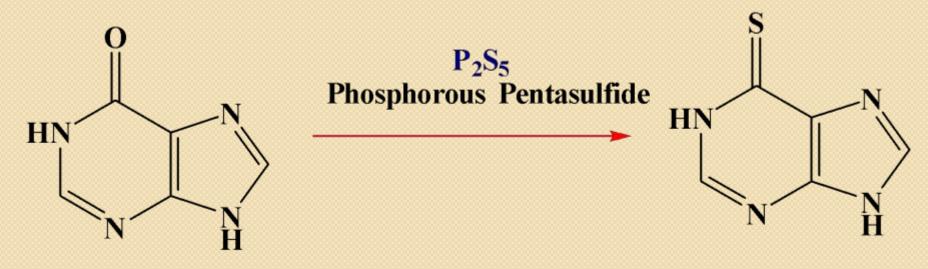
6-Mercaptopurine

Mechanism of action:

6-MP inhibit the conversion of inosine monophosphate to adenine and guanine nucleotides that are building blocks for RNA and DNA.

6-MP converted to 6-MPribose phosphate (6-thioinosinic acid, or **TIMP**)

TIMP inhibits the first step of de novo **purine**-ring biosynthesis.

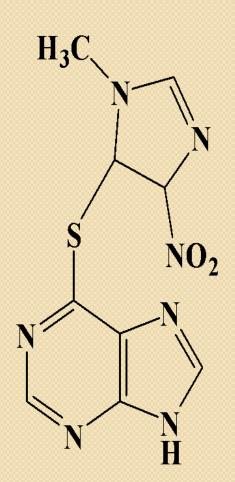

TIMP is converted to thioguanine monophosphate (TGMP), which can be incorporated into RNA. The deoxy-ribonucleotide analogs that are also formed are incorporated into DNA.

This results in nonfunctional RNA and DNA.

Metabolic degradation (catabolism) of 6-MP

Inhibit xanthine oxidase and Inhibit the formation of thiouric acid so increase the potency of MP

Preparation of 6-MP


Hypoxanthine

.Azathioprine: - use in treatment acute leukemia

Heterocyclic derivatives of 6-MP 6-{(1-methyl-4-nitroimidazole-5-yl)thio}purine

Preparation of Azathioprine

5-chloro-1-methyl4-nitroimidazole

Thioguanine•

2-aminopurine-6-thiol 6-mercaptoanaloge of guanine

Preparation of thioguanine